Featured image of post IV. Minus World

IV. Minus World

Entering the minus quantum realm

Problem

We know that the unique edge in quantum computing is derived from negative amplitudes. How can we cause a qubit value to have negative amplitude?

Solution

Working with the Hadamard Gate

The only instruction that we’ve seen that introduces negative amplitude is the hadamard gate. Specifically, $1\xmapsto{-1} 1$.

$$H=\frac{\sqrt{2}}{2}\begin{bmatrix}1 & 1 \newline 1 & -1\end{bmatrix}$$

So if we want to enter minus world, we probably want to perform $\texttt{HAD}$ on a qubit with value $1$.

$$\frac{\sqrt{2}}{2}\begin{bmatrix}1 & 1 \newline 1 & -1\end{bmatrix}\cdot\begin{bmatrix}0 \newline 1\end{bmatrix} = \frac{\sqrt{2}}{2}\begin{bmatrix}1 \newline -1\end{bmatrix}$$

Recall that $\texttt{HAD}$ is its own reverse ($\texttt{HAD}^\dagger=\texttt{HAD}\implies H^2=I$). $$\begin{align*}(\frac{\sqrt{2}}{2}\begin{bmatrix}1 & 1 \newline 1 & -1\end{bmatrix})^\dagger\cdot \frac{\sqrt{2}}{2}\begin{bmatrix}1 & 1 \newline 1 & -1\end{bmatrix}\cdot\begin{bmatrix}0 \newline 1\end{bmatrix} &= (\frac{\sqrt{2}}{2}\begin{bmatrix}1 & 1 \newline 1 & -1\end{bmatrix})^\dagger\cdot\frac{\sqrt{2}}{2}\begin{bmatrix}1 \newline -1\end{bmatrix}\newline \begin{bmatrix}0 \newline 1\end{bmatrix} &= \frac{\sqrt{2}}{2}\begin{bmatrix}1 & 1 \newline 1 & -1\end{bmatrix}\frac{\sqrt{2}}{2}\begin{bmatrix}1 \newline -1\end{bmatrix}\end{align*}$$

The Magic

The left side of the above equation shows a qubit with amplitude $1$ on value $1$. Looking at the computations in matrix form, it is clear that what we want is to somehow negate both sides of the equation.

Here is a simple equality.

$$-\frac{\sqrt{2}}{2}\begin{bmatrix}1 \newline -1\end{bmatrix}=\frac{\sqrt{2}}{2}\begin{bmatrix}-1 \newline 1\end{bmatrix}$$

Now the solution is clear. $$\texttt{NOT}(\frac{\sqrt{2}}{2}\begin{bmatrix}1 \newline -1\end{bmatrix})=\frac{\sqrt{2}}{2}\begin{bmatrix}-1 \newline 1\end{bmatrix}=-\frac{\sqrt{2}}{2}\begin{bmatrix}1 \newline -1\end{bmatrix}$$

Putting it All Together

The first step, we applied $\texttt{HAD}$ on a qubit with amplitude $1$ on value $1$ to get the following state. $$\frac{\sqrt{2}}{2}\begin{bmatrix}1 \newline -1\end{bmatrix}$$ In the next step, we negated this expression with a $\texttt{NOT}$ operation. $$\frac{\sqrt{2}}{2}\begin{bmatrix}-1 \newline 1\end{bmatrix}$$ Finally, we applied $\texttt{HAD}$ on this updated qubit. $$\begin{bmatrix}0 \newline -1\end{bmatrix}$$

Notice that we require in the first step for the qubit to have value $1$. If it had value $0$, the steps would be the same but without the minus sign. In other words, no effect would take place.

This is powerful, because now we have a $\texttt{If }A\texttt{=1 THEN MINUS}(A)$ subroutine.

Quantum Code

$ \texttt{INIT}(A) \newline\texttt{NOT}(A) \newline\quad\newline \newline\texttt{HAD}(A) \newline\texttt{NOT}(A) \newline\texttt{HAD}(A) $

A0NO1T(A1)-1H1AD(A)01NO1T1(A)10HA-D11(11A)0101

$ \mathbb{A}[0] = (1\times 1\times 1\times 1) + (1\times -1\times 1\times 1) = 0\newline \mathbb{A}[1] = (1\times 1\times 1\times -1) + (1\times -1\times 1\times 1) = -2 $

Unnormalized. Clearly when normalized, $\mathbb{A}[1]=-1$.

New Power

Suppose we created some subroutine $\texttt{MAJ}(ABCM)$ which negates $M$ if the majority value in $ABC$ is $1$ (we will use it with $M=0$, so essentially this function just sets $M$ to the majority value).

Now, with our new code, the following subroutine is possible.

$ \texttt{INIT}(ABCM) \newline\texttt{// assign }ABC \newline\texttt{MAJ}(ABCM) \newline\texttt{HAD}(M) \newline\texttt{NOT}(M) \newline\texttt{HAD}(M) $

Going forward, we can just execute subroutines like this with $\texttt{IF MAJ}(ABCM)\texttt{ THEN MINUS}(M)$.

My heart is in the work ― Andrew Carnegie
Built with Hugo
Theme Stack designed by Jimmy